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Abstract

Of all the functions that define visual performance, the mesopic luminous efficiency function is

probably the most complex and hardest to standardise or model. Complexities arise because of the

substantial and often rapid visual changes that accompany the transition from scotopic to photopic

vision. These are caused not only by the switch from rod to cone photoreceptors, but also by

switches between different post-receptoral pathways through which the rod and cone signals are

transmitted. In this review, we list several of the complexities of mesopic vision, such as rod–cone

interactions, rod saturation, mixed photoreceptor spectral sensitivities, different rod and cone retinal

distributions, and the changes in the spatial properties of the visual system as it changes from rod- to

cone-mediated. Our main focus, however, is the enormous and often neglected temporal changes

that occur in the mesopic range and their effect on luminous efficiency. Even before the transition

from rod to cone vision is complete, a transition occurs within the rod system itself from a sluggish,

sensitive post-receptoral pathway to a faster, less sensitive pathway. As a consequence of these

complexities, any measure of mesopic performance will depend not only on the illumination level, but

also on the spectral content of the stimuli used to probe performance, their retinal location, their

spatial frequency content, and their temporal frequency content. All these should be considered

when attempting to derive (or to apply) a luminous efficiency function for mesopic vision.
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Introduction

The visual system is able to operate effectively from
starlight to bright sunlight; over a change in illumin-
ation by more than a factor of 1011, despite the limited
(approximately 102) response range of its constituent
neurones. One of the ways in which it achieves this is
by switching between two different types of photore-
ceptor with partially overlapping operating ranges: the
sensitive rods, functioning at lower levels of illumin-
ation, and the less sensitive cones, functioning at
higher levels.
Figure 1 illustrates the range of illumination levels to

which the human eye is exposed, from absolute rod

threshold and the detection of a few photons to levels
that bleach almost all of the photopigment. The range is
divided into three regions according to which types of
photoreceptor are functioning. The scotopic region,
within which only rods operate, starts at absolute rod
threshold and ends at cone threshold. The photopic
region, within which only cones operate, begins at rod
saturation and extends to the highest illumination levels.
Finally, between cone threshold and rod saturation lies
the mesopic region, within which both rods and cones
operate. This intermediary region is the one that
concerns us in this review. We discuss several of its
complexities, but focus, in particular, upon the com-
plexities that arise because of the large temporal differ-
ences between rod- and cone-generated signals. These
differences are caused in part by differences between the
responses of the rod and cone photoreceptors them-
selves (e.g. Baylor, 1987), but they are additionally
caused by the differences between the responses of the
rod and cone post-receptoral pathways (see Sharpe and
Stockman, 1999). Because mesopic vision is inherently
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much more complex than either scotopic or photopic
vision, by way of introduction, we will begin by
discussing each of these first.

Scotopic and photopic vision

Scotopic luminous efficiency and scotopic vision are
comparatively straightforward because they depend on
the behaviour of a single univariant photoreceptor type,
the rods. Univariance means that the photoreceptor
response varies only according to the number of
photons that are absorbed. All that varies with photon
wavelength is the probability that a photon will be
absorbed, not the photoreceptor response after it has

been absorbed. As a result, individual photoreceptors
are colour blind: changes in wavelength are indistin-
guishable from changes in intensity. A consequence of
univariance is that when the rods are isolated the rod
spectral sensitivity or scotopic luminous efficiency func-
tion [V¢(k)] is additive below rod saturation (i.e. below
high mesopic luminance levels where the rod response
range is exceeded and the rods are no longer capable of
delivering a differential signal). Thus, scotopic luminous
efficiency fulfils the basic requirement of any system of
photometry, which is that the luminous efficiency of any
mixture of lights is the sum of the efficiencies of the
components of the mixture; otherwise known as Abney’s
Law (Abney and Festing, 1886; Abney, 1913).
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Figure 1. Illumination levels. Typical ambient light levels are compared with photopic luminance (log cd m)2), pupil diameter (mm), photopic and

scotopic retinal illuminance (log photopic and scotopic trolands respectively) and visual function. The scotopic, mesopic and photopic regions are

defined according to whether rods alone, rods and cones, or cones alone operate. The conversion from photopic to scotopic values assumed a

white standard CIE D65 illumination (based on the design of Hood and Finkelstein, 1986).
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Additivity is less likely to hold if vision depends upon
more than one photoreceptor, which is the case for
photopic vision, where two or three different types of
cone photoreceptor are contributing their responses. In
fact, additivity then only holds under fairly restricted
measurement conditions. For photopic vision, such
restricted conditions include minimum flicker (hetero-
chromatic flicker photometry or HFP), in which con-
tinuously alternating lights of different wavelength are
matched in luminance to minimise the perception of
flicker, and minimally distinct border (or MDB), in
which the relative intensities of the two half fields are set
so that the border between them appears �minimally
distinct�. Both of these techniques appear to satisfy
additivity under some conditions; however, additivity
does not hold for techniques, such as side-by-side
heterochromatic brightness matching, typically used to
estimate mesopic luminous efficiency (e.g., Sperling,
1958; Wagner and Boynton, 1972).
But, even for the very restricted conditions of HFP

and MDB, it should be recognised that the photopic
luminous efficiency function, V(k), falls into a quite
different category from the scotopic function, V¢(k),
because it depends on the outputs of at least two cone
photoreceptor types. Yet, V(k) is often treated as if it
were [like V¢(k)] the spectral sensitivity of a univariant
photoreceptor. Unlike photoreceptor spectral sensitivi-
ties, however, the shape of V(k) changes with chromatic
adaptation (e.g. De Vries, 1948; Eisner and MacLeod,
1981; Stockman et al., 1993). Thus, the photopic (and
by extension the mesopic) luminous efficiency function
can only be of limited applicability, because it defines
luminance strictly only under the conditions for which it
was measured. Different functions must be derived for
different conditions, and any given function is not
straightforwardly generalisable to other conditions of
adaptation – particularly to other conditions of chro-
matic adaptation. In contrast, in the scotopic range the
luminous efficiency function does not change with
adaptation.
In short, the problem is that although the scotopic

luminous efficiency function is determined primarily by
receptoral events, the photopic and mesopic functions
are determined by post-receptoral as well as receptoral
events.

The challenge of mesopic photometry

Figure 2 shows the CIE scotopic V¢(k) (continuous line)
and the Commision Internationale de l’Eclairage (CIE)
1964 10-deg photopic V10(k) (dashed line, also known as
the �y10ðkÞ colour matching function) luminous efficiency
functions. The retinal region over which the photopic
V10(k) function was measured is more similar to that
over which V¢(k) was originally measured than the 2-deg

photopic V(k) function, so it is the more appropriate
function for comparison. Sometimes known as the
Purkinje shift (Purkinje, 1823), the transition from
scotopic to photopic conditions causes a shift in the
wavelength of peak sensitivity (kmax) from 504 to
550 nm in quantal units (or from 507 to 555 nm in
energy units), a relative increase in sensitivity to longer
wavelengths, and a relative decrease in sensitivity to
shorter wavelengths (see arrows, Figure 2).

The challenge of mesopic photometry is to characterise
how luminous efficiency changes between the scotopic
and photopic levels. Previously, the main approach has
been to measure mesopic luminous efficiency functions
as a function of mesopic intensity level and then to try to
model them as combinations of the scotopic and photopic
functions. The modelling has proved to be difficult.

Mesopic luminous efficiency functions have been
measured several times before (e.g. Walters and Wright,
1943; Kinney, 1958; Palmer, 1968; Kokoschka, 1972;
Yaguchi and Ikeda, 1984; Nakano and Ikeda, 1986;
Sagawa and Takeichi, 1986; Viénot and Chiron, 1992;
He et al., 1998). Were the relationships between the
mesopic luminous efficiency function and the scotopic
and photopic functions simple – for example a weighted
linear combination, the weights of which changed with
luminance – mesopic photometry would be relatively
straightforward. The relationship, however, is complex.
Several attempts have been made to model empirically
the scotopic to photopic transition. Implicit in most of
these models is the assumption that rod and cone signals
interact. For instance, Palmer (1968) derived a non-
linear empirical formula relating V¢(k) and V10(k), while
Kokoschka and Bodmann (1975) derived a model in
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Figure 2. CIE scotopic V ¢(k) (continuous line) and the CIE 1964

10-deg photopic V10(k) (dashed line, also known as the �y10ðkÞ colour
matching function) luminous efficiency functions. The arrows high-

light the scotopic to photopic changes (see text).
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which the contributions of the three different cone types
as well as the rods were considered (see also Trezona,
1991). More recently, Ikeda and Shimozono (1981) and
Sagawa and Takeichi (1986) modelled the logarithm of
the mesopic luminous efficiency as the weighted sum of
the logarithms of the scotopic and photopic functions
(i.e. their geometric mean), but they both used the CIE
brightness rather than the CIE luminance function (see
also Yaguchi and Ikeda, 1984; Nakano and Ikeda,
1986). In fact, as these authors argue, as mesopic
luminous efficiency is typically measured by direct
brightness matching, a photopic brightness matching
function is likely to be more appropriate than a
luminance function. Brightness matching, however, does
not obey Abney’s law (see above).

In an attempt to overcome the additivity failures that
are inherent in the use of the direct brightness match-
ing method, He and co-workers used a binocular
synchronicity method (which they refer to as a reaction
time difference method) to measure mesopic visual
performance (Bierman et al., 1998; He et al., 1998).
Their technique effectively uses a version of the �field�
sensitivity method of Stiles (1978). The subject adjusts
the illumination level in the test eye so that the onset of a
white flash in that eye appears synchronous with the
onset of a second white flash presented simultaneously
to the reference eye. In their experiment, the background
illumination in the reference eye was fixed at 589 nm
and at one of three mesopic luminance levels, while the
background illumination in the test eye was set at one of
several wavelengths, but could be adjusted in luminance
by the subject in order for the two flashes to appear
synchronous. The authors claim that for each fixed level
in the reference eye the mesopic luminous efficiency
function obtained – by finding the illumination at each
background wavelength that made the flashes appear
synchronous – can be modelled by a simple linear
combination of V¢(k) and V10(k) (He et al., 1998). For
further information about the synchronicity method, see
also CIE (1989, 2001). Although promising, binocular
synchronicity measures must be influenced by the
complex changes in rod–cone delay that accompany
changes in adaptation level (see below), as well as by the
changes in delay caused by changes in the relative rod
and cone contributions to the detection of the two
flashes, neither of which are likely to be simple. An
obvious complication, given that the adapting field
wavelength in one eye is varied from long to short
wavelengths, is that the luminous efficiency will be
distorted by the additional suppression of the rods by
the cones, which are excited more by long-wavelength
background fields (see Figure 3).

The difficulties of mesopic photometry are to some
extent unavoidable. They derive from a number of
inherent complexities of mesopic vision, some of which

have been acknowledged and others of which have been
ignored. We discuss some of these complexities next.

Complexities of mesopic photometry

Mesopic vision and mesopic photometry are complex
because they depend on the outputs of both the rods
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and the cones. Not only are there differences in the rod
and cone photoreceptor responses themselves, but also
in the properties of the post-receptoral pathways
subserving the rod and cone signals before they merge.
The scotopic system must be sensitive enough to
respond to just a few photons at low levels, so that it
must integrate signals over space and time. Such
integration is less important for the photopic system,
which can therefore provide better spatial and tem-
poral acuity. However, both systems reduce their
spatial and temporal integration to some extent as
their adaptation levels increase. By trading off integ-
ration for acuity, their sensitivities are reduced and
their dynamic ranges extended. In general, though,
photopic (cone) integration is less for any given
condition than scotopic (rod) integration.

Complexity 1: more than one photoreceptor operates

Mesopic vision depends upon more than one photo-
receptor. Mesopic luminous efficiency is therefore
unlikely to be additive, since it will reflect the effects
of any selective adaptation at the rod and cone
photoreceptors or within their pathways before their
signals merge. As discussed above, mesopic luminous
efficiency curves cannot be predicted from simple linear
combinations of the photopic and scotopic efficiency
curves, nor does the combination change in a simple
way with luminance.

Complexity 2: rods and cones interact

Figure 3 shows incremental thresholds or threshold-
versus-intensity (TVI) curves (open symbols) from
Sharpe et al. (1992) measured in a normal trichromat,
CF, using a 520-nm target against different back-
grounds. Cone thresholds, which were measured for
the same target and background conditions but during
the plateau terminating the cone phase of recovery
(before the rods have fully recovered) after a bleach of
7.7 log10 photopic td, are shown as filled symbols. Below
the cone thresholds, rods mediate target detection.
The slope of the TVI function is steeper on the

640 nm background wavelength than on the shorter
wavelength backgrounds, even over those intensity
ranges below cone threshold within which only rods
determine threshold. As the main difference between the
640 nm field and the other fields is that it more strongly
excites cones, this indicates that the sensitivity of the
rods to an incremental target is not determined by
quantal absorptions in the rods alone but by quantal
absorptions in both the rods and the cones. Thus,
mesopic luminous efficiency must depend on the mean
chromaticity of the illumination and its relative stimu-
lation of the rods and cones.

There is substantial literature on rod–cone interac-
tions and how they affect visual sensitivity (e.g. Frumkes
et al., 1972, 1973, 1986; Makous and Boothe, 1974;
Frumkes and Temme, 1977; Latch and Lennie, 1977;
Bauer et al., 1983a,b; Goldberg et al., 1983; Alexander
and Fishman, 1984; Coletta and Adams, 1984; Buck
et al., 1985; Shapiro, 2002). Such interactions must be
incorporated into any complete model of mesopic
luminous efficiency.

Complexity 3: rods saturate

Mesopic luminous efficiency changes abruptly and non-
linearly in the region of rod saturation (e.g. Aguilar and
Stiles, 1954; Adelson, 1982), which begins at about
2.0 log10 scotopic trolands (sc td) and extends to about
3.0 log10 sc td. In this region, the rod contribution to
mesopic luminous efficiency is no longer linear or
straightforward. As a result, mesopic luminous effi-
ciency function in the rod saturation region is both
extremely difficult to predict, and extremely difficult to
measure.

Complexity 4: rods and cones have different spatial
distributions on the retina

Cone density peaks in the centre of the fovea, where
rods are absent, while rods peak at an eccentricity of
about 20� of visual angle (e.g. Østerberg, 1935; Curcio
et al., 1990). Thus, the mesopic luminous efficiency
function will depend critically on the spatial location
and size of the visual stimulus.

Complexity 5: rod and cone vision have very different
spatial contrast sensitivities

Scotopic and photopic vision exhibit different spatial
acuities (e.g. König, 1897; Hecht and Mintz, 1939).
Further their spatial contrast sensitivity functions have
markedly different shapes at moderate to high spatial
frequencies (e.g. D’Zmura and Lennie, 1986; Hess et al.,
1987). For example, the rod spatial contrast sensitivity
function peaks at approximately 0.9 cycles per degree,
whereas the cone function peaks at about 2.8 (D’Zmura
and Lennie, 1986). As a result of these differences,
mesopic luminous efficiency will depend upon the
spatial frequency content of the visual stimulus (i.e.
size, sharpness of border, etc.).

Complexity 6: temporal differences between rod and cone
signals

Because of the substantial differences in temporal
properties between rod- and cone-mediated vision,
measures of mesopic luminous efficiency and measures
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of visual performance under mesopic conditions will be
strongly dependent not only on the relative sensitivities
of the rods and cones, but also on the temporal
characteristics of the stimuli used to make those
measurements. Thus, targets of different duration may
produce mesopic luminosity functions with different
rod-to-cone weightings.

The luminous perception of steadily-viewed targets
will, of course, be less influenced by temporal differences
between the rod and cone signals than that of flickering
or transient targets. In a real-world environment,
however, perfectly steady targets are seldom encoun-
tered (and would in any case perceptually fade).
Mesopic vision, like scotopic and photopic vision,
depends upon temporal transients. Rod and cone
temporal differences will thus profoundly affect most
measures of mesopic visual performance in real-world
situations as well as many measures made in laboratory
situations, such as synchronicity settings, reaction times,
flicker photometry and flicker detection.

Rod–cone delays

It is well known that rod vision is much more sluggish
than cone vision (e.g. Hecht and Shlaer, 1936; Arden
and Weale, 1954; Veringa and Roelofs, 1966; MacLeod,
1972). Although an oversimplification, it is helpful to
think of this sluggishness as an extra delay (Dt) in the
rod pathway, as modelled in the inset of Figure 4. A

more exact, objective approach is to measure the delay
as a function of temporal frequency (i.e. to measure the
phase delay, Dh, as a function of temporal frequency).
Such measurements can be made by perceptually nulling
(i.e. cancelling the flicker percept between) two sinusoi-
dally flickering lights, chosen so that one light is detected
by the rods and the other by the cones.

If the two lights were in opposite phase (i.e. 180� apart
in phase), equal in effective intensity, and seen by a single
photoreceptor type, then the two would destructively
interfere to produce a steady (or nulled) output at all
frequencies. If, however, the two opposite-phase lights
were seen separately by rods and cones, then, because of
the rod–cone delay, they would not null each other at
most frequencies (unless the delay was a multiple of the
flicker cycle). To produce a null, the rod light would have
to be physically advanced away from opposite phase by
the same amount that the signals it produces are delayed
within the visual system relative to the cone signals. These
adjustments, made as a function of frequency, yield the
rod–cone phase lag data shown in the left panel of
Figure 4. We refer to these data as pertaining to scotopic
levels, even though the cones are stimulated by one of
the flickering lights, because the adaptive state of the
rods is within the scotopic range, and the cones are used
only as a reference.

If the delay is a true time delay, rather than, for
example, persistence (which can delay some frequencies
by more than others), the required relative phase
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adjustment should be a linear function of frequency.
The line fitted to the data shows that this is at least
approximately correct for the rod–cone delay. The line is
consistent with a one cycle (360 deg) delay being
reached by about 15 Hz. Given that the period of one
cycle at 15 Hz is 66.7 ms, it follows that this value
approximates the rod–cone time delay, Dt (but see
Figure 9).

Rod–cone self-cancellation

Instead of ensuring that two flickering stimuli are seen
separately by rods and cones, we could instead choose a
single, flickering light that is seen by both rods and

cones – as would be fairly common in real-life mesopic
situations. The effect of a rod–cone delay of 66.7 ms on
the detectability of flicker is illustrated in Figure 5. At
low frequencies and at frequencies near 15 Hz, the rod
and cone flicker signals constructively interfere to
produce a larger signal than either signal alone. At
7.5 Hz, however, the delay is such that the rod and cone
signals destructively interfere and cancel each other. We
refer to this as self-cancellation.

The phenomena of rod–cone self-cancellation, which
is summarised in Figure 6, was first reported by
MacLeod (1972). In his original experiments, the subject
was presented with a single disc of light, which flickered
at 7.5 Hz. At very low luminance levels, neither the disc
nor the flicker can be detected. As the intensity is
increased, the disc becomes visible as the contrast
threshold is crossed, but it remains steady and non-
flickering until the flicker threshold is crossed. At
7.5 Hz, the flicker (but not the disc) disappears at an
intensity above the flicker threshold (the lower limit of
null) and then reappears again at a still higher intensity
(the upper limit of null).
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The effect of rod adaptation on the null can be gauged
by superimposing the yellow disc on a blue-green back-
ground, which selectively adapts the rods. By increasing
the intensity of the background, the rods become
increasingly less sensitive relative to the cones. Figure 7
shows that as the rods are adapted by increasing the
background level, the rod flicker threshold rises, as
expected, and meets the lower limit of the null. Above
the null, the flicker reappears at the upper limit of the null.
With further increases in background level, the upper
limit of the null falls. This fall occurs because the cone
flicker signal is no longer cancelled by the rod signal. The
final rise in flicker threshold above 0.5 log photopic td is
due to the blue-green background adapting the cones.
Rod-cone flicker cancellation has also been described by
van den Berg and Spekreijse (1977).

Phase interactions and spectral sensitivity

Constructive and destructive interference between rod
and cone signals will alter the mesopic luminous
efficiency function. If we assume that the mesopic
luminous efficiency [Vmes(k)], is a linear combination of
the CIE scotopic luminous efficiency [V¢(k)] and the CIE
1964 10-deg photopic luminous efficiency [V10(k)], then:

log10 VmesðkÞ

¼ bþ log10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½acosDhV10ðkÞþV 0ðkÞ�2þ½asinDhV10ðkÞ�2

q
;

ð1Þ

where a is the relative photopic weight, b is a scaling factor,
and Dh is the phase delay between the rod and cone signals.
We can predict Vmes (k) for various values of a and Dh.

Figure 8 shows the theoretical predictions for two
values of a. In the left panels, a ¼ 0.20, which makes the
scotopic and photopic luminous efficiencies equal at
570 nm (a is given relative to unity peaks of the V¢(k) and
V10(k) luminous efficiency functions). In the right panels,
a ¼ 1.94, which makes them equal at 500 nm. The
predictions are shown for Dh ¼ 0, 45, 90, 135 and 180�.

As expected, the largest losses of sensitivity occur when
Dh ¼ 180� and the rod and cone sensitivities are equal. In
practice, the sensitivity will never go to zero, because of
non-linear distortion, retinal scatter and other factors.
The loss of sensitivity gets smaller as either the rod and
cone sensitivities become unequal or as Dh becomes
smaller than 180�. Changes in the relative rod–cone
sensitivity (a) will result from changes in wavelength (but
see below), while changes inDhwill result from changes in
frequency.

Additionally, the value of a will depend upon the
relative adaptation of the rods and cones and thus on
the spectral content of the environment in which the
mesopic luminous efficiency is measured or to which it is
to be applied.

Rod signals speed up with adaptation

So far, we have assumed a rod–cone time delay of
66.6 ms, which is consistent with the rod–cone phase
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delays and the rod–cone self-cancellation described
above. When rod phase delays are measured employing
a binocular cancellation technique using only rod
stimuli, so that the measurements are truly scotopic (in
the sense that cones are unstimulated), there is clear
evidence that the rod system speeds up substantially
from absolute rod threshold (low scotopic) to rod
saturating (high scotopic) levels. Figure 9 shows unpub-
lished data from our laboratory. They are rod phase
delays measured binocularly using 500 nm targets with
the level in the right eye fixed at )1.3 log10 sc td level,
and the level in the left eye varied from )3.8 to
)0.8 log10 sc td. The phase delays at )1.3 log10 sc td
level are, therefore, roughly 0� (as the two eyes are in the
same state of adaptation), while those at lower levels are
phase delayed and those at higher levels are phase
advanced. As can be seen in Figure 9, the changes in
phase delay between levels are substantial. These chan-
ges are also reflected in changes in rod temporal
summation (e.g. Sharpe et al., 1993a).
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The changes in phase delay should have comparatively
little influence on the scotopic luminous efficiency over
the low to middle scotopic range, because only one
receptor system is involved. At mesopic levels, however,
the changes are likely to become significant, because they
will alter the rod–cone phase delay and therefore the
interaction between the rod and cone signals. Though
significant, these changes are still likely to be relatively
small, compared with those originating from one addi-
tional complexity that is found at mesopic levels.

Multiple rod signals at mesopic levels

Mesopic photometry is further complicated by the
emergence of a second, faster rod pathway at mesopic
levels. Evidence for this pathway comes from several
sources, including rod–cone phase and electroretino-
gram (ERG) data (Conner, 1982; Sharpe et al., 1989;
Stockman et al., 1991, 1995).

Figure 10 shows the scotopic rod–cone phase delays
previously seen in Figure 4. At higher scotopic or

mesopic levels, there is an abrupt reduction in the
rod–cone phase delay (as shown by the black dotted
squares). Once again, it is helpful to think of these
changes in terms of shortening time delays. As depicted
in the inset, the change in rod–cone delay from scotopic
to mesopic levels can be modelled as a reduction in the
time delay by Dt1. We assume that a transition occurs
because a faster rod pathway with a time delay of Dt2
takes over the transmission of the rod signal from a
slower pathway with a time delay of Dt1 + Dt2. The
slopes of rod–cone phase delays are consistent with time
delays of Dt1 ¼ Dt2 � 33.3 ms.

Rod self-cancellation

We can produce rod self-cancellation, similar to rod–
cone cancellation, by using a 500 nm target that is below
cone threshold, but is detected by both the slow and the
fast rod pathways. The effect of a slow to fast rod
pathway delay of 33.3 ms on the detectability of rod
flicker is illustrated in Figure 11. This figure is similar to
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Figure 5, except that with a delay of 33.3 ms, rather than
66.6 ms, between the two signals, the frequency at which
they destructively interfere and cancel each other is
15 Hz rather than 7.5 Hz.
The perceptual consequences of rod–rod self-cancel-

lation are shown in Figure 12. These effects were first
evident in the work of Conner (1982), and were
quantified and further elucidated by Sharpe et al.
(1989). The subject is presented with a 500-nm target
flickering at 15 Hz. The progression of perceptual
phenomena is similar to that for rod–cone self-cancel-
lation shown in Figure 6. As the intensity is increased,
the flicker first appears as the flicker threshold is

crossed, but then disappears at the lower limit of null,
only to reappear again at the upper limit of null.
Importantly, these transitions all occur below cone
flicker threshold, which suggests they are scotopic
phenomena.

If the 500 nm target is superimposed on a deep red
background of variable intensity, which is specifically
chosen to desensitise or adapt the cones relative to the
rods, the null and its consequences for flicker and
luminous detection can be followed to higher luminan-
ces. Figure 13 shows 15 Hz rod detectability data (filled
circles). Conspicuously, the detectability data are com-
plex, with a discontinuity occurring near a background
intensity of 0 log10 sc td, where the flicker percept is lost,
even though the thresholds are well below the cone
flicker threshold (open circles). Additionally, alongside
the break in the curve is a suprathreshold region within
which 15 Hz flicker is invisible or nulled (Sharpe et al.,
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1989). The discontinuity and flicker null are consistent
with destructive interference between a fast rod signal
and a slow one that is delayed by approximately 33.3 ms.

Rod–rod self-cancellation can also be demonstrated
in the ERG. Figure 14 shows the ERG responses to
15 Hz Ganzfeld flicker in a normal observer, LTS. The
responses have been arranged vertically so that the
intensity level, which is given in log10 scotopic trolands
to the right of each record, increases upwards. With
increasing flicker intensity, the ERG amplitude at 15 Hz
grows slightly, but then falls to a minimum at an
intensity corresponding to the perceptual null, before
growing once more. Moreover, in accordance with
destructive interference, the ERG responses rapidly
reverse in phase by a half cycle as the null intensity is
crossed. The coincidence of the minimum in the ERG
with the perceptual null is important because it suggests
that the electrical cancellation measured electrophysio-
logically and the neural cancellation measured percep-
tually are manifestations of the same phenomenon.

Rod–rod phase interactions and spectral sensitivity

Signals in the slow and fast rod pathways combine to
produce a resultant rod signal, which in turn interacts

with the cone signal. The two rod signals can alter the
mesopic luminous efficiency function in two ways. First,
depending on the phase delay between them and their
relative amplitudes, the slow and fast rod signals will
interfere either constructively or destructively, so chan-
ging a, the relative photopic–scotopic weight in Equa-
tion (1). If the slow and fast signals destructively
interfere, then a will increase (i.e. the scotopic contri-
bution to luminous efficiency will decrease), whereas if
they constructively interfere, a will relatively decrease
(i.e. the scotopic contribution will relatively increase).
Secondly, the phase delay between the two rod signals
and their relative amplitudes determine the phase delay
of the resultant rod signal, and thus the rod–cone phase
delay, Dh in Equation (1). The effects of Dh and a on the
mesopic luminous efficiency function were discussed and
illustrated above (see Figure 8).

Choice of photopic function for predicting mesopic

luminous efficiency

The mistakes that were made in deriving the photopic 2�
V(k) function, which was adopted by the CIE in 1924
(CIE, 1926), are a warning to those who are in the
process of defining a mesopic standard. V(k) is a hybrid
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function, artificially smoothed and symmetrised from
very divergent data measured using very different
procedures at several laboratories. The 1924 V(k)
function was originally proposed by Gibson and Tynd-
all (1923). It is shown in Figure 15 as the continuous
line. Even though they were unrepresentative of the
other data, and patently wrong, the Hartmann data
became the CIE standard for photopic luminance
efficiency at short wavelengths. As a result, the 1924
V(k) function deviates from typical luminance efficiency
data (e.g. filled squares, open circles) by a factor of
nearly 100 in the violet, a problem which continues to
plague both colorimetry and photometry today. Poten-
tially, these errors will be propagated if the same flawed
photopic V(k) function is used as a component of a new
mesopic standard.

Obviously, some of the problems inherent in V(k) can
be avoided by choosing a different photopic luminosity
standard, especially if one considers that a luminosity
standard for the central 2 deg of vision is not necessarily
appropriate for mesopic vision anyway. Although not
ideal because it is based mainly on limited photometric
measurements made at only four wavelengths in only a
subset of the Stiles and Burch (1959) observers, an
alternative is the V10(k) luminous efficiency function.
This function was adopted by the CIE in 1964 for the
central 10 deg of vision (see Figure 2). It is shown by the
dashed line in Figure 15, for comparison with the V(k)
function and the luminosity data used in the derivation
of V(k). The difference between V10(k) and V(k) is more
than a log unit at short wavelengths and remains
significant up to even 525 nm: wavelengths at which the
rods are very sensitive.

The V10(k) function was used in the mesopic models
devised by, for example, Palmer (1968) and Kokoschka
and Bodmann (1975). However, Ikeda and Shimozono
(1981) and Sagawa and Takeichi (1986) both used the
CIE brightness rather than the CIE luminance function
to model mesopic luminous efficiency. Given that
mesopic luminous efficiency is typically measured by
direct brightness matching, a photopic brightness
matching function may well be more appropriate than
a minimum flicker function. Unfortunately, as we have
already emphasised, this also means that mesopic
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luminous efficiency is determined by a technique that
yields non-additive data. While an additive system of
mesopic photometry is certainly more practicable, we
may in the end have to accept that mesopic photometry
is inherently non-additive and must be modelled as such.

Conclusions

Mesopic vision and mesopic luminous efficiency are
complex. As argued above, any measure of mesopic
performance is likely to be dependent upon adaptation,
spectral composition, spatial frequency, temporal fre-
quency, retinal location and retinal area. Moreover, it is
likely to be non-additive. Clearly, this is not an area for
the fainthearted.

Despite these difficulties, some practical standard for
mesopic photometry is required. If accuracy is para-
mount, however, then the only consistently reliable way
of estimating mesopic luminous efficiency is to measure
it for each new application. Indeed, a single practical
standard that can be usefully generalised to predict
mesopic performance for all conditions may not be
achievable.
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